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Abstract 
 

The trend for remote sensing satellite missions has 
always been towards smaller size, lower cost, more 
flexibility, and higher computational power. 
Reconfigurable Computers (RCs) combine the flexibility 
of traditional microprocessors with the power of Field 
Programmable Gate Arrays (FPGAs). Multi-node 
systems of High-Performance RCs (HPRCs) are 
becoming more popular recently as dictated by the 
requirements of many large-scale applications. 
Therefore, HPRCs are a promising candidate for on-
board preprocessing.  

However, in order to meet the aggressive demands 
of those large-scale applications such as remote 
sensing, scalability of such applications on HPRCs may 
become an issue that can negatively affect the overall 
performance. In this paper, we investigate the potential 
of using HPRCs for on-board preprocessing by 
studying and characterizing the scalability of the 
Landsat 7 ETM+ ACCA algorithm on two of the state-
of-the-art reconfigurable platforms, SRC-6 and Cray-
XD1. 
 
1. Introduction 
 

Remote sensing satellite missions have always been 
characterized by the demand of smaller size, lower cost, 
and more flexibility. On-board processing, as a 
solution, permits a good utilization of expensive 
resources. Data processing can be performed on-orbit 
prior to downlink resulting in the reduction of 
communication bandwidth as well as in simpler and 
faster subsequent computations to be performed on 
ground stations. Consequently, on-board processing can 
reduce the cost and the complexity of the On-The-
Ground/Earth processing systems. Furthermore, it 
enables autonomous decisions to be taken onboard 
which can potentially reduce the delay between image 
capture, analysis and action. This leads to faster critical 
decisions which are crucial for future reconfigurable 
web sensors missions as well as planetary exploration 
missions. 

Reconfigurable Computers (RCs) combine the 
flexibility of traditional microprocessors with the power 
of Field Programmable Gate Arrays (FPGAs). These 

platforms have always been reported to outperform the 
conventional platforms in terms of throughput and 
processing power within the domain of cryptography 
[1], image processing [2], and remote sensing 
applications [2], [3]. Multi-node systems of High-
Performance RCs (HPRCs) are becoming more popular 
recently as dictated by the requirements of many large-
scale applications. These systems are characterized by 
lower form/wrap factors compared to parallel 
platforms, and higher flexibility than ASIC solutions. 
Therefore, HPRCs are a promising candidate for on-
board preprocessing. The SRC-6 Reconfigurable 
Computer and Cray-XD1 are examples of this category 
of computers [4], [5], [6] and are used here for this 
purpose. 

However, in order to meet the aggressive demands 
of those large-scale applications such as remote sensing, 
scalability of such applications on HPRCs may become 
an issue that can negatively affect the overall 
performance. In this paper, we investigate the potential 
of using HPRCs for on-board preprocessing by studying 
and characterizing the scalability of the Landsat 7 
ETM+ ACCA algorithm [7] on two of the state-of-the-
art reconfigurable platforms, SRC-6 and Cray-XD1. 
 
 
2. Systems and Application 

 
In this work, two main systems have been used.  

These are the SRC-6 and the Cray-XD1 at The George 
Washington University, High-Performance Computing 
Laboratory (HPCL). 

Landsat 7 ETM+ ACCA algorithm was selected to 
determine an almost practical bounds on the potential 
performance of HPRCs should all architectural 
challenges be alleviated and to gain an insight into the 
system level programmability and performance issues 
apart from those known for general high-performance 
computers. 
 
2.1. SRC-6 Reconfigurable Computer 
 

SRC-6 platform consists of one or more general-
purpose microprocessor subsystems and one or more 
MAP® reconfigurable processor subsystems [4]. These 
subsystems are interconnected through a Hi-Bar Switch 



communication layer and Global Common Memory 
(GCM) nodes of shared memory space; see Fig. 3(a). 
Each microprocessor board is based on a 3GHz Pentium 
4 microprocessors. Microprocessors boards are 
connected to the MAP boards through the SNAP® 
interconnect. The SNAP card plugs into the DIMM slot 
on the microprocessor motherboard to provide higher 
data transfer rates between the boards than the 
inefficient but common PCI solution. The peak transfer 
rate between a microprocessor board and the MAP 
board is 1600 MB/sec. 
Hardware architecture of the SRC-6 MAP processor is 
shown in Fig. 3(b). The MAP board is composed of one 
control FPGA and two user FPGAs, all Xilinx Virtex II-
6000-4. Additionally, each MAP unit contains six 
interleaved banks of the on-board memory (OBM) with 
a total capacity of 24 MB. The maximum aggregate data 
transfer rate among all FPGAs and on-board memory is 
4800 MB/s. The user FPGAs are configured in such a 
way that one is in the master mode and the other is in 
the slave mode. The two FPGAs of a MAP are directly 
connected using a bridge port. Furthermore, MAP 
processors can be chained together using a chain port to 
create an array of FPGAs. 
 

 
a) System Architecture 

 

 
b) MAP® Reconfigurable Processor 

 
Figure 1.  Hardware Architecture of SRC-6 

 
2.2. Cray XD1 Reconfigurable Computer 

 
The Cray XD1 system is based on the Direct 

Connected Processor (DCP) architecture, harnessing 
many processors into a single, unified system [5], [6]. 
Cray’s implementation of the DCP architecture 
optimizes message-passing applications by directly 
linking processors to each other through a high 
performance interconnect fabric, eliminating shared 

memory contention and PCI bus bottlenecks. The Cray 
XD1 base unit is a chassis. Up to 12 chassis can be 
installed in a cabinet.  

 

 
Figure 2.  Hardware Architecture of Cray XD1 
 
The Cray XD1 compute subsystem is composed of a 

Linux operating system and AMD Opteron 64-bit 
processors. The AMD Opteron processor’s integrated 
memory controller increases memory bandwidth and 
reduces latencies. Three HyperTransport™ links per 
processor provide up to 19.2 GB per second I/O 
bandwidth. Dual Core AMD Opteron processors are 
available as an option on the Cray XD1 system. Two 
processing cores exist on a single die, doubling peak 
performance, without raising power consumption and 
heat levels.  

The Cray XD1 RapidArray interconnect directly 
connects processors over high-speed, low-latency 
pathways. Each fully configured chassis includes:  

• 6 (or 12) custom communications processors. 
The communications processors deliver up to 4 
GB per second (or 8 GB per second with 
expansion fabric) bandwidth with 1.7 
microsecond MPI latency between nodes. 

• A 48 GB per second (optional expansion to 96 
GB per second), nonblocking, crossbar 
switching fabric in each chassis provides two 
(or four) 2 GB per second links to each node 
and twelve (or twenty-four) 2 GB per second 
interchassis links 

Each Cray XD1 chassis can be configured with six 
application acceleration processors, based on Xilinx 
Virtex-IIPro (Virtex-4) FPGAs. 
 
2.3. Description of the Automatic Cloud Cover 

Assessment (ACCA) Algorithm 
 
Theory of Landsat 7 ETM+ ACCA algorithm is 

based on the observation that clouds are highly 
reflective and cold. The high reflectivity can be 
detected in the visible, near- and mid- IR bands. The 
thermal properties of clouds can be detected in thermal 
IR band. Table 1 presents the bands and their detection 
features. 

The Landsat 7 ETM+ ACCA algorithm recognizes 
clouds by analyzing the scene twice. In the first pass 
eight filters are utilized for this purpose, see Table 2. 

 



Table 1.  Landsat 7 ETM+ Bands 

 
Table 2.  Pass-One Filters 

 
 

The goal of pass-one is to develop a reliable cloud 
signature for use in pass-two where the remaining 
clouds are identified. Omission errors, however, are 
expected. These errors create algorithm failure and must 
be minimized. Three categories result from pass-one: 
clouds, non-clouds, and an ambiguous group that are 
revisited in pass-two. 
 

Table 3.  Generalized Classification Rules  
for Pass-One [8] 

 
 
John A. Williams et al., [8], [9], have used band 

mapping techniques to implement Landsat-based 
algorithms on MODIS data. The generalized and 
modified classification rules for Pass-One are shown in 
Table 3. 

Pass-Two resolves the detection ambiguity resulted 
from Pass-One. Thermal properties of clouds identified 
during Pass-One are characterized and used to identify 
remaining cloud pixels. Band 6 statistical moments 
(mean, standard deviation, distribution skewness, 
kurtosis), see equation (1), are computed and new 
adaptive thresholds are determined accordingly. The 
95th percentile, i.e. the smallest number that is greater 
than 95% of the numbers in the given set of pixels, 
becomes the new thermal threshold for Pass Two. 
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Image pixels that fall below the new thermal 

threshold and survive the first three Pass-One filters are 
classified as cloud pixels. Specifically, the following 
three conditions must be satisfied: 

• Desert index (Filter 7) is greater than 0.5 
• Colder cloud population exceeds 0.4 percent 

of the scene 
• Mean temperature of the cloud class is less 

than 295K 
During processing, a cloud mask is created. The final 
step is processing the cloud mask for holes. After the 
two ACCA passes, a filter is applied to the cloud mask 
to fill in cloud holes. This filtering operation works by 
examining each non-cloud pixel in the mask. If 5 out of 
the 8 neighbors are clouds then the pixel is reclassified 
as cloud. Cloud cover results from both Pass-One and 
Pass-Two are compared. Extreme differences are 
indicative of cloud signature corruption. When this 
occurs, Pass-Two results are ignored and all results are 
taken from Pass-One. The final cloud cover percentage 
for the image is calculated based on the filtered cloud 
mask. The cloud pixels in the mask are tabulated and a 
cloud cover percentage score for the scene is computed. 
 
2.4.  ACCA Hardware Architecture 

 
The ACCA algorithm has been implemented 

targeting both conventional microprocessor (μP) 
platforms and reconfigurable computing (RC) 
platforms. The μP implementation has been performed 
using a C++ and Matlab programs whose results have 
been used as a reference against which the RC results 
are evaluated for both accuracy and speed/performance. 
The RC implementations have been performed using 
two designs, namely full-precision fixed-point 
arithmetic and floating-point arithmetic. 
 
 

 
Figure 3.  Top-Level Architecture of the ACCA 

Algorithm 
 
 



Top-Hierarchical Architecture 
 
Fig. 3 shows the main functional/architectural units 

of the ACCA algorithm. As previously described, the 
ACCA algorithm handles the cloud population in each 
scene uniquely by examining the image data twice after 
a normalization step being performed on the raw data to 
compensate for temporal data characteristics. The first 
pass captures clouds using eight different filters. The 
goal of Pass-One is to develop a reliable cloud signature 
for Pass-Two. Pass-Two resolves the detection 
ambiguity resulted from Pass-One where thermal 
properties of clouds identified during Pass-One are 
characterized and used to identify remaining cloud 
pixels. 

 

Normalization Module 
 

ETM+ bands 2-5 are reflectance bands, while band 6 
is a thermal band. The reflectance bands are normalized 
to correct for illumination (solar zenith) angle yielding 
an estimated reflectance value ρ. The thermal band is 
calibrated to an equivalent blackbody Brightness 
Temperature (BT). This normalization for the 
reflectance bands is a linear operation while it is non-
linear for the thermal band, see Fig. 4(a). In the on-
board processing system, these operations are 
performed by the calibration stage [8]. 

Due to the high cost in terms of hardware resources 
required, a piecewise-linear approximation is used to

 
a) Exact Normalization Operations 

 

 
b) Approximated Normalization Operations 

Figure 4.  Normalization Module Architecture 



 

implement the non-linear normalization function for the 
thermal band, see Fig. 4(b). 
 
Pass-One Module 
 

The first pass of the ACCA algorithm is a cascading 
set of eight threshold-based filters, see Table 2. These 
filters are designed to classify each pixel into one of 
four classes, ColdCloud, WarmCloud, NotCloud, and 
Ambiguous, as shown in Table 3. Pixels labeled 

ambiguous are reprocessed in the second pass as 
previously discussed. Many of the tests in pass-one are 
threshold tests of ratio values, such as the snow test. We 
found out that it was more efficient, in terms of the 
required resources, to multiply one value by the 
threshold, and compare with the other value, instead of 
performing the division then comparing against the 
threshold. Fig. 5 shows the equivalent hardware 
architecture of Pass-One. 

 
Figure 5.  Pass-One Architecture 

  

3. Experimental Work 
 

In a previous work [3], we presented the design and 
implementation of the ACCA algorithm adapted for 
Landsat 7 ETM+ data. That work has been proven to 
provide higher performance and higher detection 
accuracy than previously reported results. The higher 
performance was achieved through full-pipelining and 
superscaling (up to 8 concurrent engines), and thus 
achieving 4000 Megapixels/sec as a data consumption 
rate and 800 Megapixel/sec as a data production rate. In 
addition, the performance has been compared to similar 
hardware implementation and proved to achieve as high 
as 16 folds speedup. The speedup compared to a 
2.8GHz Xeon implementation has been 28 folds higher, 
see Fig. 6. On the other hand, the detection accuracy 
has been verified against software floating-point 
reference implementation, and the results revealed 
identical results. 

In this work, we investigate the potential of using 
multi-node HPRCs for on-board preprocessing by 
studying and characterizing the scalability of the 
Landsat 7 ETM+ ACCA algorithm on two of the state-
of-the-art reconfigurable platforms, SRC-6 and Cray-
XD1. The workload was distributed over all nodes 
using  

MPI. We scatter the input five bands across all nodes 
and gather the resulting mask pixels from all nodes at 
the base node.  

 

 
Figure 6.  Hardware-to-Software Performance [3] 

 

 
a) MPI on the SRC-6 



 
b) MPI on the Cray XD1 

Figure 6. Parallel Programming Issues 
 
Fig. 6 demonstrates how the parallel applications 

using MPI were distributed over both platforms. The 
figure also shows, as a case study, the specific 
installations of these machines at GWU. On the SRC-6, 
see Fig. 6(a), MPI processes had to run on the 
microprocessors and an association between each 
microprocessor and FPGA(s) is established. One 
limitation, however, was that the network interfacing 
cards (SNAPs) were limited to two and since they 
cannot be efficiently shared only two MPI processes 
would make sense. This made our SPMD program only 
limited to running on one microprocessor and one 
FPGA. Another FPGA can be used with some 
additional programming effort. At the end two 
microprocessors and four FPGAs were left unused; 
otherwise the programmer would have had to exert a 
large effort. 

In the case of the XD1, see Fig. 6(b), straightforward 
application of MPI resulted in using all nodes. 
However, it only made sense to have the node program 
running on one microprocessor and its FPGA. The other 
microprocessor on each node was not useful. 
 

Table 4.  Multi-Node Execution Time on SRC-6 

 
 

Table 5.  Multi-Node Execution Time on Cray-XD1 

 
 
Tables 4 and 5 show the performance of the ACCA 

algorithm on SRC-6 and Cray-XD1. The XD1 had an 

advantage with its FPGA chips running at 200 MHz, 
while the SRC machine had a restriction to run the 
FPGAs only at a 100 MHz speed. This explains the 
higher performance of XD1 system over SRC-6. The 
results from Tables 4 and 5 also show that the 
computation scalability on both machines is close to 
ideal. In other words, as the number of nodes increases 
the computation speedup increases with approximately 
the same factor. On the other hand, the communication 
overhead is almost constant.  This is due to the fact that 
the same input data bands, i.e. same data size, is 
distributed/scattered across all nodes which results in 
almost the same communication overhead irrespective 
of the number of nodes. One can also note that this 
overhead is higher than the computation time. This is 
because the inherent parallelism of the application is 
fully exploited. This observation results in large 
deviation in the overall scalability from the ideal. This 
indicates that with the remarkable speed of FPGAs, 
overheads, such as communications, must be at a much 
lower levels than what is accepted in conventional high 
performance computers.  However, the results also 
show that we may not need very large machines that are 
characterized with high overhead when HPRCs are 
used, which is a requirement for on-board 
preprocessing.   
 
 
4. Conclusions 

 
In this work, we extended our previous effort [3], in 

which we presented the design and implementation of 
the ACCA algorithm adapted for Landsat 7 ETM+ data, 
by investigating the potential of using multi-node 
HPRCs for on-board preprocessing. Landsat 7 ETM+ 
ACCA algorithm was selected to determine an almost 
practical bounds on the potential performance of 
HPRCs should all architectural challenges be alleviated 
and to gain an insight into the system level 
programmability and performance issues apart from 
those known for general high-performance computers. 

We studied and characterized the scalability of the 
application on two of the state-of-the-art reconfigurable 
platforms, SRC-6 and Cray-XD1 at The George 
Washington University, High-Performance Computing 
Laboratory (HPCL). 

 The workload was distributed over all nodes using 
MPI. We scattered the input five bands across all nodes 
and gather the resulting mask pixels from all nodes at 
the base node. 

The computation scalability on both machines was 
shown to be close to ideal, and the communication 
overhead was almost constant irrespective of the 
number of nodes. The inherent parallelism of the 
application was fully exploited. However, a large 
deviation in the overall scalability from the ideal was 
observed and analyzed.  

Our analysis indicated that with the remarkable 
speed of FPGAs, overheads, such as communications, 
must be at a much lower levels than what is accepted in 
conventional high performance computers.  However, 
the results also showed that we may not need very large 



machines that are characterized with high overhead 
when HPRCs are used, which is a requirement for on-
board preprocessing. 
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